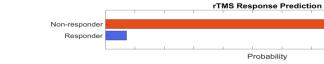


QEEG Clinical Report BrainLens V0.4

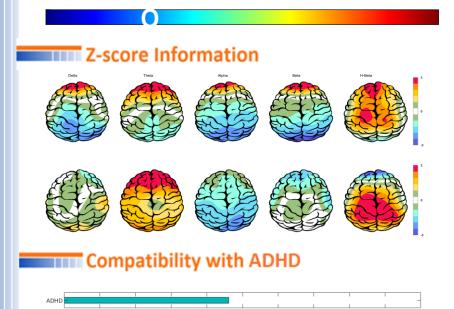
Report Description

Personal & Clinical Data


Name	Robabeh Heydarian	Date of Recording	2025-06-21	
Date of Birth - Age	2009-03-30 - 16.23	Gender	Female	
Handedness(R/L)	Right	Source of Referral	Dr Mina Dehghani	
Initial Diagnosis	Initial Assessment			
Current Medication		-		

Dr Mina Dehghani

Summary Report

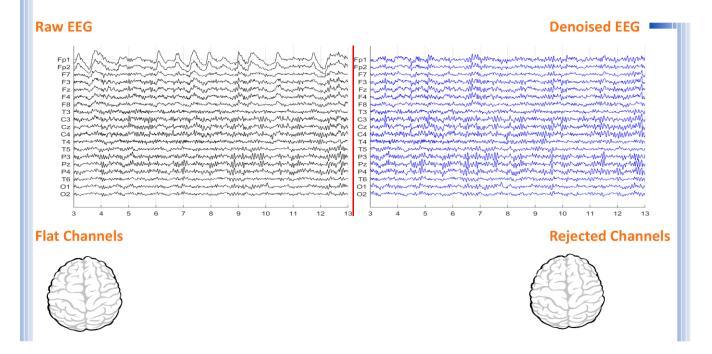


Relative Power

TMS Responsibility

Arousal Level

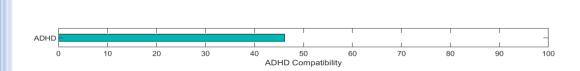
APF

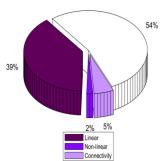

Posterior APF-EC= 10.12

To investigate QEEG-based predicting medication response, please refer to the Report.

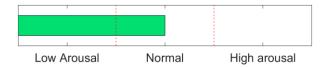
Denoising Information (EC)

Number of Eye and Muscle Elements				Low Artifact Percentage	
Eye	2	Muscle	0	0	
Total Artifact Percentage				High Artifact Percentage	
				0	
EEG Quali	ity	bad		Total Recording Time Remaining 74.81 sec	




Pathological assessment for ADHD

Compare to ADHD Database

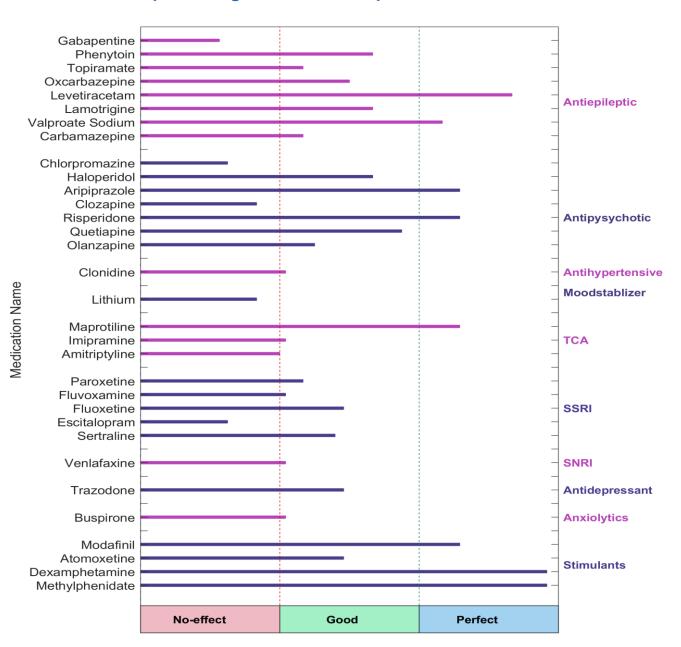


EEG Compatibility with ADHD Diagnosis

Arousal Level Detection

ADHD Clustering *

1. Same inattentive and hyperactive prevalence, may be anxious, may be highly intelligent, need sufficient sleep, and should avoid high arbohydrate inbtake. Consider clonidine


* If there is Paroxymal epileptic discharge in EEG data, this case needs sufficient sleep and should avoid high carbohydrate intake.

You can consider anticonvulant medications.

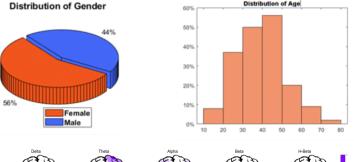
QEEG based predicting medication response

Explanation

Medication Recommendation

These two tables can be considered the most important finding that can be extracted from QEEG. To prepare this list, the NPCIndex Article Review Team has studied, categorized, and extracted algorithms from many authoritative published articles on predict medication response and Pharmaco EEG studies. These articles are published between 1970 and 2021. The findings extracted from this set include 85 different factors in the raw band domains, spectrum, power, coherence, and loreta that have not been segregated to avoid complexity, and their results are shown in these diagrams. One can review details in NPCIndex.com.

two charts, calculate probability to various medications, according only to QEEG indicators. Blue charts favor drug response and red charts favor drug resistance. The longer the bar, the more evidence there is in the articles. Only drugs listed in the articles are listed. These tables present the indicators reviewed in the QEEG studies and are not a substitute for physician selection.

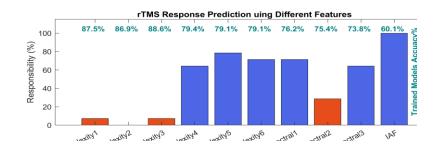


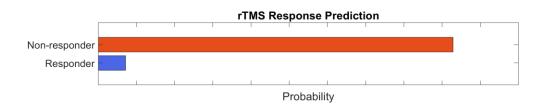
rTMS Response Prediction

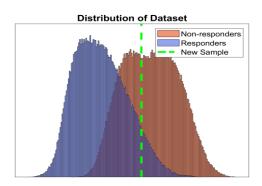
Network Performance

Accuracy: 92.1% Sensitivity: 89.13% Specificity: 97.47%

Participants Information **Distribution of Gender**

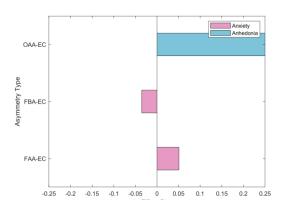




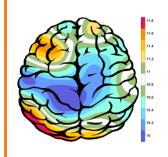

Features Information

----Responsibility

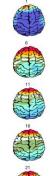
Data Distribution

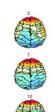

About Predicting rTMS Response

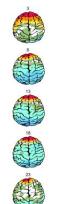
This index was obtained based on machine learning approaches and by examining the QEEG biomarkers of more than 470 cases treated with rTMS. The cases were diagnosed with depression (with and without comorbidity) and all were medication free. By examining more than 40 biomarkers capable of predicting response to rTMS treatment in previous studies and with data analysis, finally 10 biomarkers including bispectral and nonlinear features entered the machine learning process. The final chart can distinguish between RTMS responsive and resistant cases with 92.1% accuracy. This difference rate is much higher than the average response to treatment of 44%, in the selection of patients with clinical criteria, and is an important finding in the direction of personalized treatment for rTMS.



Alpha Asymmetry(AA)

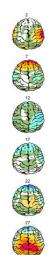

APF(EC)

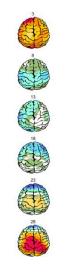


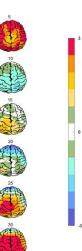

Frontal APF= 10.33

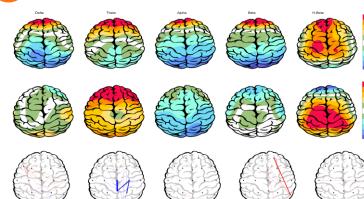
Posterior APF= 10.12

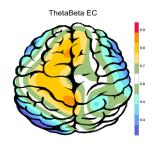
Absolute Power-Eye Closed (EC) 🥟

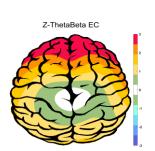


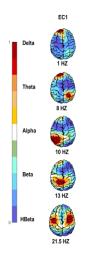


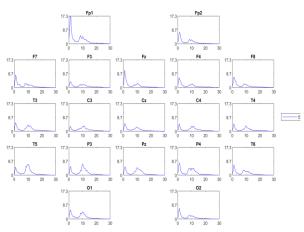


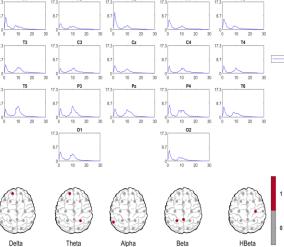


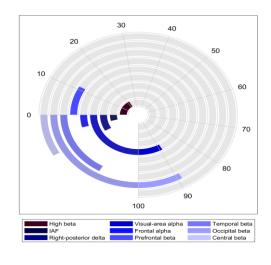


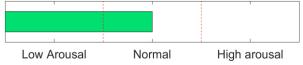

Z Score Summary Information (EC)




E.C.T/B Ratio (Raw- Z Score)




EEG Spectra



Arousal Level

