QEEG Clinical Report

EEGLens

The QEEG report is provided by NPCindex Company, operating under the OEEGhome brand.

Personal Data:

Name: Amin Rahimi

Gender: Male

Age: 2002-01-23 - 23.9

Handedness:

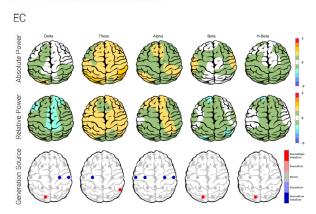
Clinical Data:

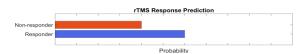
Initial diagnosis: ADD-Adult ADHD-Aggressive-Alcoholism-Anger

Medication: -

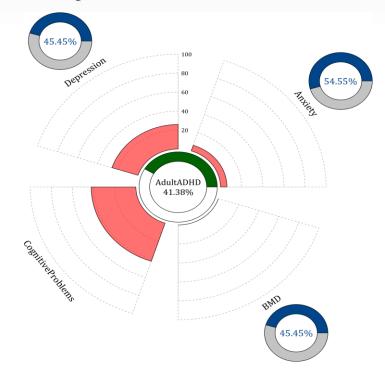
Date of Recording: 2025-10-03 Source of Referral: Ms Rezaei

This case belongs to Ms Rezaei




EEG Quality

EC


Z-score Information

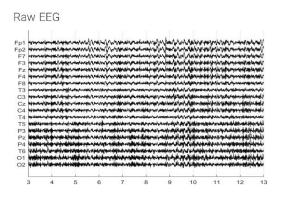
■ TMS Reponsibility

■ Pathological Assessment

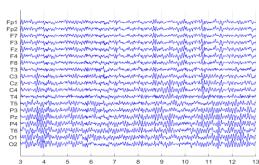
■ EEG Neuromarker Values

Neuromarker	Region	Value	Assessment
AFP	Frontal	10.08	Normal
AFP	Occipital	10.38	Normal
Arousal Level	u .	-	Normal

QEEGhome Clinical Report


Ms Rezaei

Denoising Information


Eye Close

Rejected Channel

Denoised EEG

Flat Channel

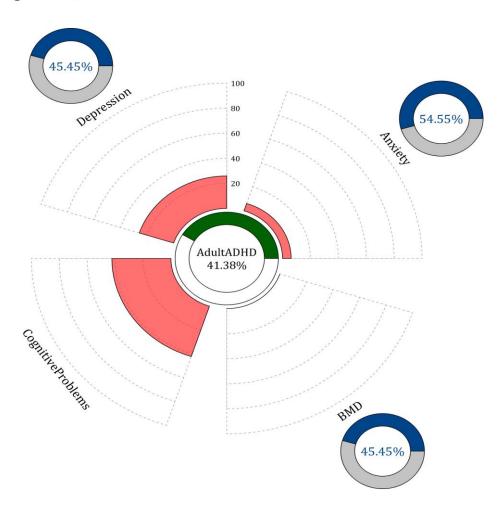
Total Recording Time Remaining: 370.46 sec **Number of Eye and Muscle Elements**

Eye: 2 Muscle: 0

Low Artifact Percentage

High Artifact Percentage

Total Artifact Percentage


EEG Quality: perfect

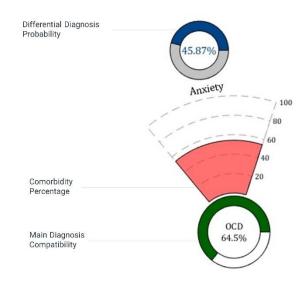
Pathological Assessment

Main Diagnosis: Adult ADHD

Description

According to the guidelines, the initial diagnosis of adult ADHD could have comorbidities such as alcohol abuse, anxiety, and depression. It also differentially diagnoses with depression, anxiety, and BMD.

In the above graph, the **red area** shows the percentage of each comorbidity from your patient's EEG markers. Observe that each comorbidity marker is not unique and can be shared with other comorbidities.


Side circles in the above graph represent the differential diagnosis between depression and its misdiagnosis conditions based on your patient's EEG markers and trained artificial intelligence. The differential diagnosis probability is represented by **the bold blue bars** in the circles, and the probability of depression is represented by the gray bars.

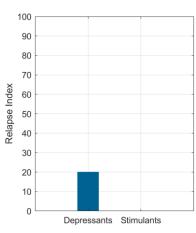
Note: In case your patient has drug abuse, obtain the substance abuse pathologic page of QEEGhome by registering the diagnosis under the initial diagnoses section of the website.

References

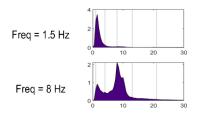
Sadock, B. J., Sadock, V. A., & Ruiz, P. (Eds.). (2025). Kaplan and Sadock's comprehensive textbook of psychiatry (11th ed., Vols. 1-2). Wolters Kluwer Sadock, B. J., Sadock, V. A., & Ruiz, P. (2022). Kaplan and Sadock's synopsis of psychiatry: Behavioral sciences/clinical psychiatry (12th ed.). Wolters Kluwer

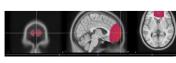

User Manual




Pathological Assessment for Substance Abuse

Substance Abuse Compatibility





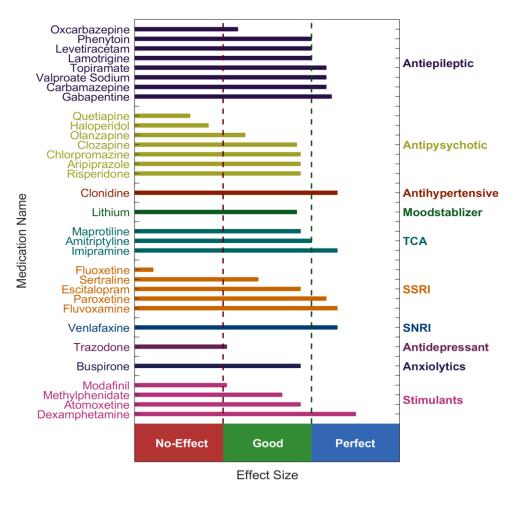
Functional Problems Source Detection

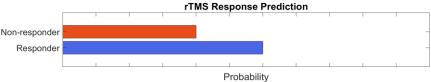
Eye Close

, NOT Found *,*

Brodmann area 19 Inferior Temporal Gyrus Middle Occipital Gyrus

Note


The **Relapse** graph displays the relapse index based on a combination of EEG neuromarkers. It is valid only if the patient has used each of the substances included in the chart; otherwise, the index is not applicable.


The **Compatibility** graph shows how closely the patient's EEG neuromarkers match typical EEG changes caused by specific substances. It helps identify the dominant substance effect in cases of multiple drug use. This index is also valid only if the patient has actually used the substances represented.

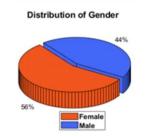
QEEG Based Predicting Medication Response

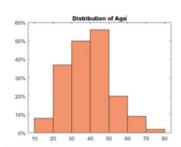
Explanation

These two tables can be considered the most important finding that can be extracted from QEEG. To prepare this list, the NPCIndex Article Review Team has studied, categorized, and extracted algorithms from many authoritative published articles on predict medication response and Pharmaco EEG studies. These articles are published between 1970 and 2021. The findings extracted from this set include 85 different factors in the raw band domains, spectrum, power, coherence, and loreta that have not been segregated to avoid complexity, and their results are shown in these diagrams. One can review details in NPCIndex.com .

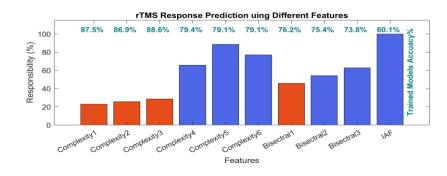
Medication Recommendation

These two charts, calculate response probability to various medications, according only to QEEG indicators. Blue charts favor drug response and red charts favor drug resistance. The longer the bar, the more evidence there is in the articles. Only drugs listed in the articles are listed. These tables present the indicators reviewed in the QEEG studies and are not a substitute for physician selection.

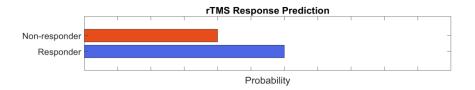


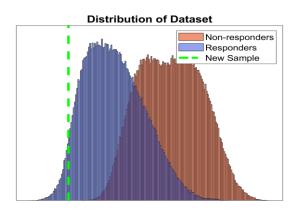

rTMS Response Prediction

Network Performance


Accuracy: 92.10% Sensitivity: 89.13% Specificity: 97.47%

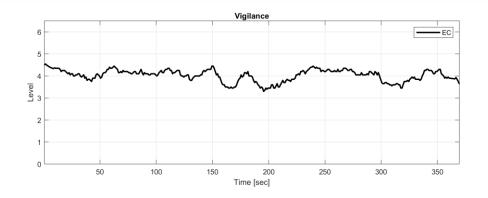
Participants Information



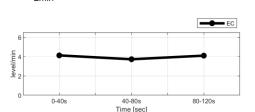

Features Information

Responsibility

Data Distribution

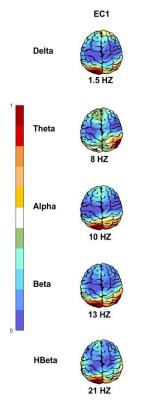

About Predicting rTMS Response

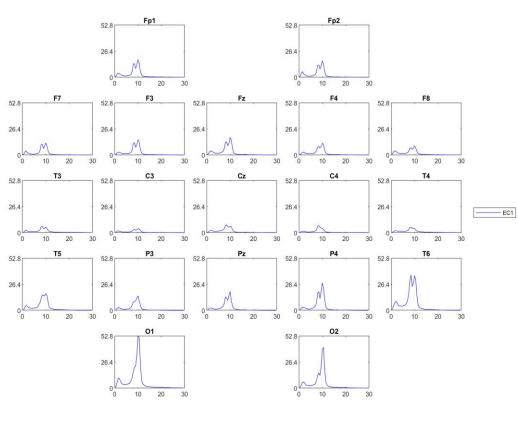
This index was obtained based on machine learning approaches and by examining the QEEG biomarkers of more than 470 cases treated with rTMS. The cases were diagnosed with depression (with and without comorbidity) and all were medication free. By examining more than 40 biomarkers capable of predicting response to rTMS treatment in previous studies and with data analysis, finally 10 biomarkers including bispectral and nonlinear features entered the machine learning process. The final chart can distinguish between RTMS responsive and resistant cases with 92.1% accuracy. This difference rate is much higher than the average response to treatment of 44%, in the selection of patients with clinical criteria, and is an important finding in the direction of personalized treatment for rTMS.



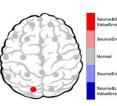
Vigilance

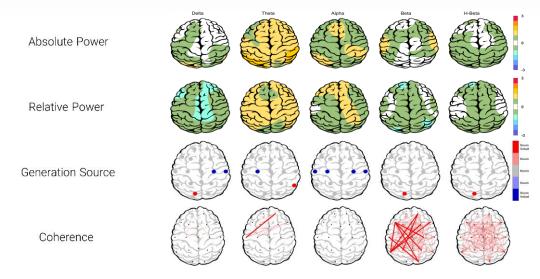
Vigilance Slope **0.02**

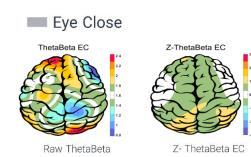

EEG Neuromarker Values


Neuromarker	Region	Value	Assessment
AFP	Frontal	10.08	Normal
AFP	Occipital	10.38	Normal
Alpha Asymmetry	Frontal	00.12	Anxiety
Alpha Asymmetry	Occipital	00.16	Anxiety
Beta Asymmetry	Frontal	00.00	Anhedonia
Arousal Level	· =	-	Normal
Vigilance Level		04.00	Normal
Vigilance Mean		04.02	Normal
Vigilance Regulation	= =	00.02	Normal
Vigilance 0 Stage (%)	= =	00.00	Normal
Vigilance A1 Stage (%)	- <u>-</u>	34.59	-

EEG Spectra

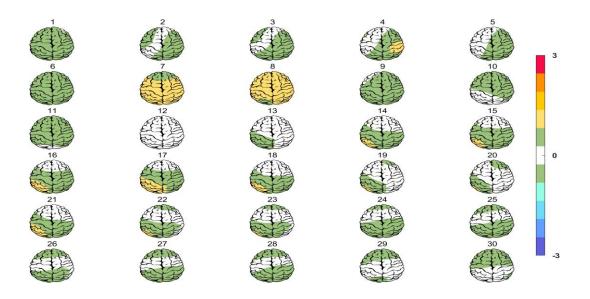






Z Score Summary Information

Eye Close


Theta/Beta Ratio



Absolute Power-Eye Close

Relative Power-Eye Close

