

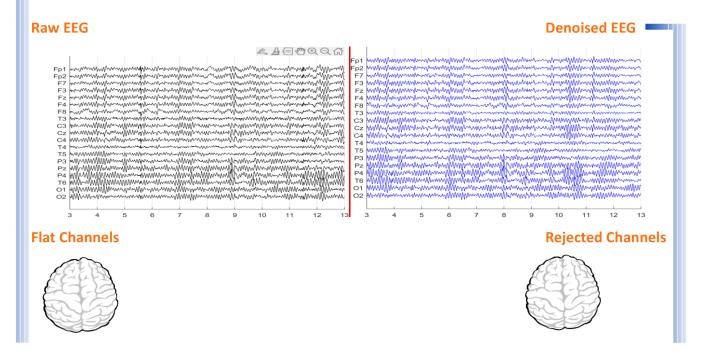





# QEEG Clinical Report BrainLens V0.4

# Report Description

# Personal & Clinical Data


| Name                | Mohamad Hadi        | Date of Recording  | 22-Oct-2024 |  |
|---------------------|---------------------|--------------------|-------------|--|
| Date of Birth - Age | 24-Oct-2008 - 15.99 | Gender             | Male        |  |
| Handedness(R/L)     | Right               | Source of Referral | Ms Radfar   |  |
| Initial Diagnosis   | Anxiety             |                    |             |  |
| Current Medication  |                     | -                  |             |  |

Ms Radfar





# Denoising Information (EC)

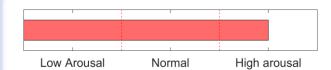


| Number of Eye and Muscle Elements |     | Low Artifact Percentage |   |                                                 |   |
|-----------------------------------|-----|-------------------------|---|-------------------------------------------------|---|
| Eye                               | 1   | Muscle                  | 1 |                                                 |   |
| Total Artifact Percentage         |     |                         |   | High Artifact Percentage                        |   |
|                                   |     |                         |   |                                                 |   |
| EEG Quali                         | ity | bad                     |   | <b>Total Recording Time Remaining</b> 35.51 sec | ; |





### Pathological assessment for ADHD


### Compare to ADHD Database



### **EEG Compatibility with ADHD Diagnosis**

| ADHD Table          | EC        |                                             |  |  |  |
|---------------------|-----------|---------------------------------------------|--|--|--|
| Feature Name        | Threshold | Region                                      |  |  |  |
| Increased rDelta    | 0.00      | NAN                                         |  |  |  |
| Increased rTheta    | 0.00      | NAN                                         |  |  |  |
| Increased rAlpha    | 1.00      | global                                      |  |  |  |
| Increased rBeta     | 0.00      | NAN                                         |  |  |  |
| Decreased SMR       | 0.00      | NAN                                         |  |  |  |
| Increased T/B Ratio | 0.00      | NAN                                         |  |  |  |
| ADHD 0 10           | 20        | 30 40 50 60 70 80 90 100 ADHD Compatibility |  |  |  |
| ADHD Probability    |           |                                             |  |  |  |

### **Arousal Level Detection**

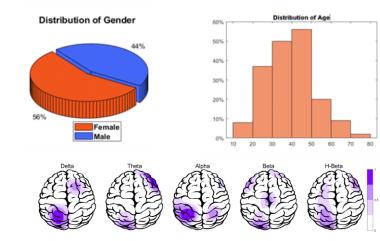


# ADHD Clustering

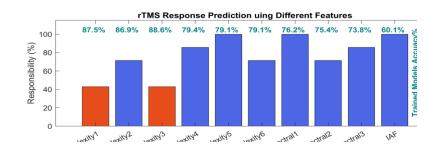
1. May be anxious, inattentive, may be highly intelligent, need sufficient sleep, and should avoid high carbohydrate intake. Consider clonidine.

<sup>\*</sup> If there is Paroxymal epileptic discharge in EEG data, this case needs sufficient sleep and should avoid high carbohydrate intake. You can consider anticonvulsant medications.

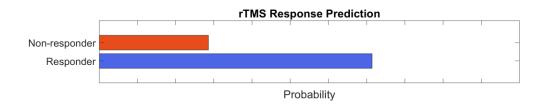




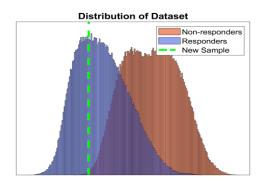

### rTMS Response Prediction


#### Network Performance

Accuracy: 92.1% Sensitivity: 89.13% Specificity: 97.47%


### Participants Information




#### Features Information

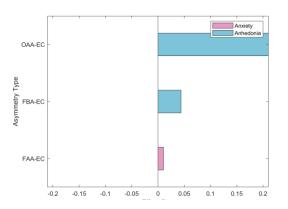


#### ----Responsibility

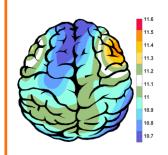


#### Data Distribution




#### About Predicting rTMS Response

This index was obtained based on machine learning approaches and by examining the QEEG biomarkers of more than 470 cases treated with rTMS. The cases were diagnosed with depression (with and without comorbidity) and all were medication free. By examining more than 40 biomarkers capable of predicting response to rTMS treatment in previous studies and with data analysis, finally 10 biomarkers including bispectral and nonlinear features entered the machine learning process. The final chart can distinguish between RTMS responsive and resistant cases with 92.1% accuracy. This difference rate is much higher than the average response to treatment of 44%, in the selection of patients with clinical criteria, and is an important finding in the direction of personalized treatment for rTMS.






# Alpha Asymmetry(AA)



### APF(EC)



Frontal APF= 10.92

Posterior APF= 11.00

### 🚃 Absolute Power-Eye Closed (EC) 🀠





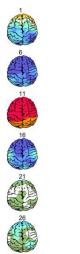


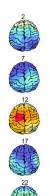


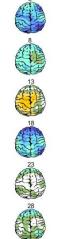










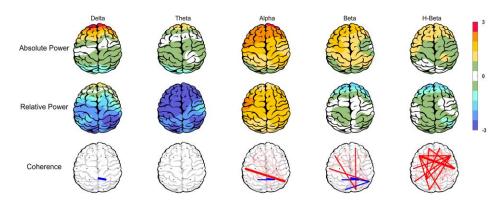




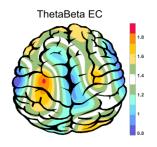


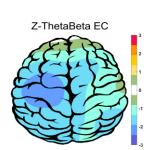




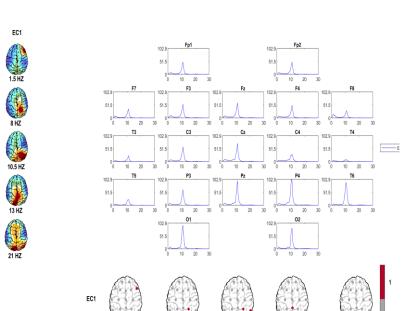





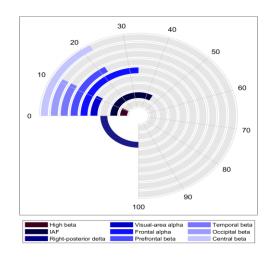




### Z Score Summary Information (EC)




### E.C.T/B Ratio ( Raw- Z Score)






### EEG Spectra



### Arousal Level



