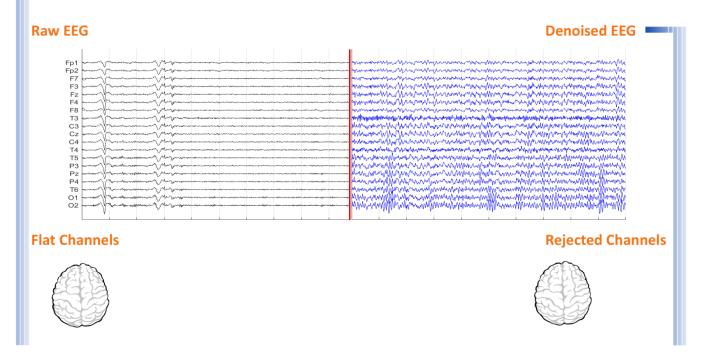


Report Description

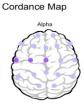
Personal & Clinical Data


Name	Anis Daneshvar	Date of Recording	29-Apr-2024
Date of Birth - Age	21-Nov-2009 - 14.44	Gender	Female
Handedness(R/L)	Right	Source of Referral	Soshiyan Center Clinic
Initial Diagnosis	ADHD		
Current Medication	Medication Free		

Soshiyan Center Clinic

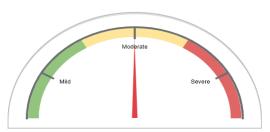
Denoising Information (EC)

Number of Eye and Muscle Elements				Low Artifact Percentage	
Eye	3	Muscle	2	0	
Total Artifact Percentage				High Artifact Percentage	
		0			
EEG Quality good		Total Recording Time Remaining	191.39 sec		



Pathological assessment for ADHD

Compare to ADHD Database

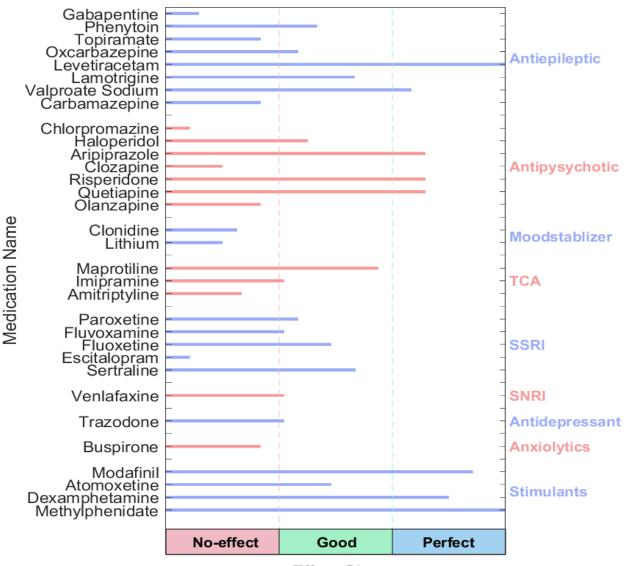

EEG Compatibility with ADHD Diagnosis

ADHD Table	EC			
Feature Name	Threshold	Region		
Increased rDelta	0.00	NAN		
Increased rTheta	2.00	frontal		
Increased rAlpha	0.00	NAN		
Increased rBeta	0.00	NAN		
Decreased SMR	-0.50	global		
Increased T/B Ratio	1.50	Fz and Cz		
ADHD 0	10 20	30 40 50 60 70 80 90 100 ADHD Probability		
ADHD Probability				

Arousal Level Detection

ADHD Severity

ADHD Clustering


- 1. Same inattentive and hyperactive prevalence. Well respond to stimulants.
- 2. May be anxious, may be highly intelligent, need sufficient sleep, and should avoid high carbohydrate intake. Avoide stimulants, benzodiazepines and SNRI. Consider clonidine.

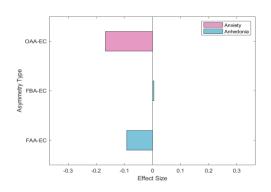
^{*} If there is Paroxymal epileptic discharge in EEG data, this case needs sufficient sleep and should avoid high carbohydrate intake. You can consider anticonvulsant medications.

QEEG based predicting medication response

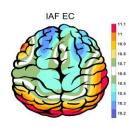
Effect Size

Explanation

Medication Recommendation


These two tables can be considered the most important finding that can be extracted from QEEG. To prepare this list, the NPCIndex Article Review Team has studied, categorized, and extracted algorithms from many authoritative published articles on predict medication response and Pharmaco EEG studies. These articles are published between 1970 and 2021. The findings extracted from this set include 85 different factors in the raw band domains, spectrum, power, coherence, and loreta that have not been segregated to avoid complexity, and their results are shown in these diagrams. One can review details in NPCIndex.com.

These two charts, calculate response probability to various medications, according only to QEEG indicators. Blue charts favor drug response and red charts favor drug resistance. The longer the bar, the more evidence there is in the articles. Only drugs listed in the articles are listed. These tables present the indicators reviewed in the QEEG studies and are not a substitute for physician selection.

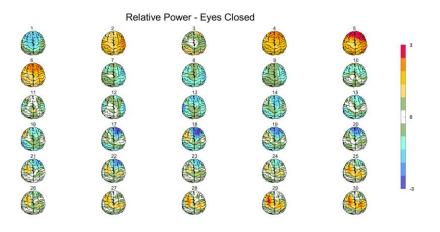


Alpha Asymmetry(AA)

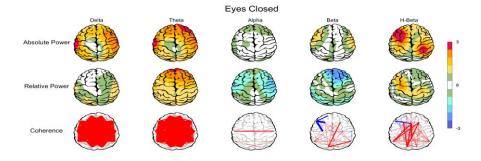
IAF(EC)

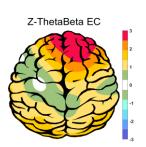
Eye Close IAF= 10.50

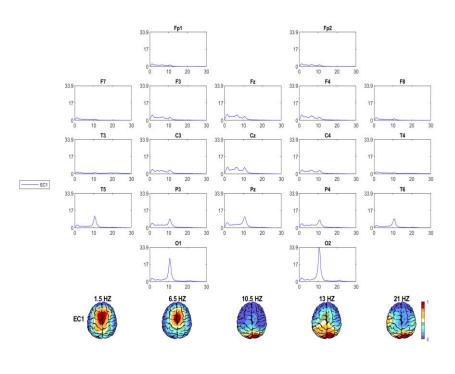
Absolute Power-Eye Closed (EC) 🌮



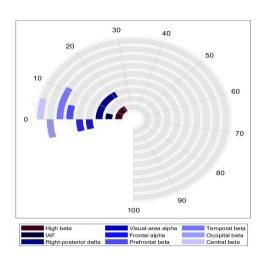
Relative Power-Eye Closed (EC) 🌮




Z Score Summary Information (EC)



E.C.T/B Ratio (Raw- Z Score)


ThetaBeta EC

EEG Spectra

Arousal Level

